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Binary correlation functions of the stress and strain tensors are obtained for com- 
posite materials, the components of which are isotropic. It is assumed that the 

averaged strain field is arbitrarily anisotropic. An expansion for the elastic field 

correlation functions in terms of the products of the second rank unit tensor, the 
average strain tensor and the direction cosines defining the orientation of the 
straight line connecting the points between which the correlation is sought, is 
obtained in an explicit form. The stress and strain dispersions are computed. It 
is shown that the corresponding fourth rank tensors are isotropic under volume 
strain, have tetragonal symmetry under pure shear, and transversal isotropy under 
tension. Numerical estimates are obtained for a material, each phase of which 

has the same ratio of the volume to shear moduli of elasticity equal to R/s. 

1, In [l] we computed second order correlation functions for the stress and strain 
fields of quasi-isotropic solids such as single phase polycrystals and composite materials, 
in the isotropic approximation. The physical sense of the isotropic approximation can 

be expressed by the fact that the contraction of the dispersion of the elasticity coeffici- 
ents tensor with the mean strain tensors (Eij ) is assumed to have the form (which is, 
strictly speaking, valid only for the isotropic fields (&ij;) 

(hiiprlhL,mn> (~p,~> (F,,,> mu zFiV,j;f t- zpsDij,il (1.1) 

l:j,;l z ‘/a (6ik6jL + 6i16j,;)* Vij,i[ -’ ‘!,fiijG/([ 

Dij,yl ~7 rij,;r - Vij,;l 

Here vijb, and Dij,<, denote the volume and deviator components of the fourth rank 
unit tensor I,jkl. 

Below we shall show that the isotropic approximation yields the correct values of the 
volume and deviator contractions of the tensor of dispersion of the stress and strain fields. 
However, the approximating assumption that the macroscopic field is isotropic and ho- 
mogeneous, limits sharply the domain of applicability of the results obtained. For this 

reason generalization of the computing model becomes imperative. The inhomogeneity 
of the macroscopic field can be accounted for by using e. g. a scheme proposed by No- 

vozhilov in l2]. Below we show how the anisotropy of the macroscopic elastic field 
may be taken into account. Since the computations become very cumbersome when an 
arbitrary microinhomogeneous medium is considered, we shall confine ourselves to the 
case when each of the phases may be assumed isotropic. 

Such properties can be found not only in glass reinforced plastics, but also in such 
systems as metal-metal, metal-polymer, metal-ceramic, etc. , in which the anisotropy 

319 



320 A.G.Fokln and T.D.Shermergor 

of the metallic phase is small either because it is small for particular metal (e. g. the 
anisotropy coefficient for tungsten is 1. 0 and for aluminium it is 1.2). or because each 
phase represents a nonoriented polycrystal in which the grain size is much smaller than 
the region of inhomogeneity. In this case the small scale spatial fluctuations of the 

elastic field related to the property of polycrystallinity can be ignored and only the 
large scale fluctuations connected with the presence of many phases in the composite, 
taken into account. 

2. The complete expression for the random component of the strain field &ii’ can 
be written out, using the Green’s tensor G,, of the equation of equilibrium, for a medi- 
um with averaged moduli of elasticity 

t.ij’ z= GL,:<,/,j * h’h.lmncmn (2.1) 

Here the asterisk denotes the operation of contraction, and symmetrization is performed 
over the indices contained within the brackets. If the macroscopic field is homogeneous, 
then the integral Fourier transform 

rp* (k) G { cp (r) .cikrclr (2.2) 

can be used to reduce (1.1) to the form 

E;; zzz gg&“~ (2.3) 

(p) g;il y X\‘ij.;l - &,(kvl)(j, ?c = (3K + p> :’ (3Y + 4p,) 

Vij,,.[ 3 ViVj . . s 1’2, vi == hi / k, hij* = &-*.$j + %p*eij (‘2.4) 

t‘ _ (~ii), eij S (fij - 1/g?k:i6ij) 

Here the terms A’ ’ ~c~mn~mn of the second order of smallness have been omitted. From 
(2.3) and (2.4) we find 

- ~;T= ~4Vij + 2q’*p,j (2.5) 

The random component of the stress field is found in the same manner. We have, 
within the previous approximation, 

CJ;i = &jh_r (ekr) + (hij;I) ?;I (2.7) 

from which using the expression (2.5) we find the Fourier transform of the random com- 
ponent of the stress field 

Oil ‘* = 2<p) [E’* (Sij - Yij) + ?l’* (fiS,j + eij - Qij)l (2.8) 

Expressions (2.5) and (2.8) enable us to find the correlation functions for the stress and 
strain fields. To do this we shall use the following equations: 

Sij;il (r) z (5ij (r -I- rl) 3;~ (r,)) 

Et&r) = CFij (r + rJ ELI (1.1)) 
(2.9) 

(5;: (k + k,);; (k,) = 8n36 (k) $,;l (k,) 

(cl’; (k + k,) i;;:(k,)) = 8n36 (k) E’;,;r (k,) 
(Z.10) 
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Here the angle brackets denote statistical averaging and the prime accompanying a let- 
ter denotes a complex conjugate. The statistical homogeneity of the elastic fields which 
average to a constant value, is also taken into account. 

We have analogous relations for the correlation function of the tensor of the module 
of elasticity 

(2.11) 

(h&, (k + k,) h&s (k,)) = 811~6 (k) A$;;, (0) ‘P* (k,) 

Here we use the hypothesis of separation of the tensor and coordinate relationships in 
the binary correlation function of the tensor of the moduli of elasticity [ 11. Inserting 

into (2.10) the explicit expressions for oij’* (k) and Eij’* (k) in accordance with(2.5) 
and (2.8) and taking (2.11) into account, we find 

Here J’ij differs from the Fourier transform of the strain Eij* (k) in not only having a 
different sign, but also by the fact that the quantities g and 7 are assumed to be func- 
tions of the coordinates, while pi j and p are, as before, taken from the domain of the 
wave numbers. An analogous statement holds for qij. Therefore the dispersion of pij 
and qij depends on k. The latter reflects the fact that the coordinate and the tensor 
relations can be separated from each other only for the correlation function of the rno- 
duli of elasticity, it cannot be performed for the stress and strain fields [I, 3] . 

3. Let us now obtain the inverses of the Fourier transforms of the correlation func- 
tions. We introduce the following auxiliary functions 

.I$,‘.~ (k) = (- 1)” vij...l(P* (k) 

J~Y:..~ (r) = ViVj . . . V, & 1 eikrkP2%(p* (k) dk 
(3.1) 

Here the order of differentiation is equal to 2a. Using (3.1) we obtain 
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. . 
Here Q ;(1 i ) 
ween them’ 

is the symmetrization operator performed within a pair of indices and bet- 

0 ( 1, ) Ai.&., = &3)(h.l,] = ’ ‘2 (&ii)lk/i -t &,,,,,ll) 

The integrals Ji/.?!f given by Eqs. (3.1) can be written in the form of an expansion in 

terms of the products of aij and ?Zij z- ?li?Zj, where ni --: xi / r 

@.h., 3 i: T/?1C’&.,.h., (3.3) 
B-0 

In (3.4) P denotes the operator of transposition of indices and summation is performed 
over all possible permutations except the identity permutations. There are a - @ cofac- 

tors of the type aij in (3.4) and $ cofactors of the type IZ,., . Thus for a 2 we have 

$$]h_[ = 6ij6t.l + 6,\,6j, + 6il6j;; 

$z:,f == 6gzkI + 6,lUjj ~1. 6i, JI )2. + 6j,?z,, -+- &[‘l,j)&. + 6j,lLil 

+z!i);{ = ‘2ijnh.f 

The number of components of the tensor I#,$),,, k! is 

iv,p = (aa)! 

Y-a (c1- p)! (Q)! 

The coefficients of the expansion (3.3) obey the following recurrence relations : 

- Tb”’ = Tk;” + [2 (x + p) - 11 Tf?, (3.5) 

For a nonoriented mechanical mixture of isotropic components the surface of the three- 

dimensional representation of correlations is spherical and the function cp (r) can be 
chosen in the exponential form 

cp (r) = exp (--I. / a) 

With Cp (r) chosen in this manner, the first five coefficients Tt’ become 

When r + 0, the coefficients Y’:,“’ assume the following limiting values 

T’“’ 
0 (-1)1/(2a it I)!! (:<.G) 

Inserting the asymptotic values of 1’1:’ . given by (3.6) into the recurrence relations 

(3,s) we confirm that when fi =f 0, the coefficients 7”: vanish as r --t 0 . This reflects 
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the condition that the medium is isotropic and according to this condition the expression 

for the symmetric fourth rank tensor must only contain all possible combinations of the 

Kronecker deltas 6 . When T --t 00, we obtain the following limiting values 

Tt-“’ =: (-l)a.2p3/[2 (a - I)]!! 

4. Expressions (3.2) yield the stress and strain dispersions. We find them by setting 
the argument r equal to zero in the corresponding correlation functions. After the nec- 

essary manipulations we obtain 

(p2ijh.l = e,j?kl + ei$jz + eilej,, 3k-l x ekraen!, 3 = 3!,1; 

Comparing the expressions for the correlation functions with those for dispersions, we 
note that in the first case the quantity which we seek can be written in the form of an 

expansion in terms of the Kronecker deltas 6, averaged deviators of the strain tensor and 
combinations of the direction cosines defining the orientation of the line connecting two 

points between which the correlation is sought, in the second case the expansion contains 

no direction cosines. Because of this the expressions for dispersions are simpler than those 
for the correlation functions. 

Expressions (4.1) become considerably simplified when the averaged strains are pure 
volume strains, i.e. when (eij) = EGij, while eij = fiij = 0. In this case we have 

Eijti~ = iIisDxaij,il, 6ijkl = $$)jh.l 

S,Pi,, = 411s <pj2 DX (a,j,l + 56ijSkl) 

Consider now another particular case of pure shear macrostrains. Setting (&ii) = 

2et,6t(i6jj?, we obtain 

E&l = 4/15e~2Dndf~~~, dfihl = 2 (1 - 6/,~ + ‘/TX’) 6ijkl - 6ij6,;, - 
(1 - ‘“;$-t + ‘/21X2)(6i&j36hf + 6ij6k36/3)- (7- 4o/TX + "j21X2)~:,(iFji!;isi)3 + 

4 (1 - 6/,X + “/zIX”) (2&3&36h_3~/3 - z 6inaja6h.n6Zn) (4.2) 

S~jiil = 4/15 (P>~ e:,D,drjhl, dzjkl = (3 + ‘17% + “/‘TACT) Bijkl - 

(3 + */,X - 16/,X2) 6ij6~l - 32/,X (1 - 2/31c) (6i36.j38,;1+ bj&36~3) - 

:! (1 + */,x + '6i21x2)63(i6j,(h.61)3 + % (3 + B/,x + 32/211c2) x 

(26i36j36,;3613 - zbn6jn6kn6,n) 

The expressions obtained show clearly that if the macrostrain is a pure volume strain. 
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then the stress and strain dispersion tensors are isotropic. For the pure shear strain, these 
tensors have tetragonal symmetry in the +z, -plane, with the fourth order axis of sym- 
metry directed along the x,-axis. Thus when the microinhomogeneous medium under- 
goes volume strain, then each of the stress and strain dispersion tensors has two indepen- 

dent components, the number rising to six in the case of shear strain. The matrix nota- 
tion is convenient in estimating the signs of the components of the tensors d&r and 

d&l . Each of the matrices &,,,, and d$, has six independent components which in 
accordance with (4.2) are 

&, ZZ 1 - l”/,x + *o/g*$, d& == 4/2lx2 

df, = 1 -32/7x $- .1/,x2, d& = - 2/7X (1 - 2/gc) 

d;c, = 1 - S/7x + 16/21x2, d& = 8 (I - 6J’7x I- 2/,x’) (4.3) 

d;, = lSs/,llc”, d& z 4 (1 - “J,‘+ + G~/21~“) 

d;, = 3;3/73c2, d;, --_ _ 32 /,x (1 - “/,x) 

di4 = 1 - 8/7x + 16/qlx2, d& = 3 + 8;:;~ -I- 16,‘# 

We see that when ns = n , de,, and d& are positive. This also hollows from the 
definition describing these quantities as squares of deviations from the mean of the cor- 
responding field components. The components d12’ are positive for any x, dlZP for 

x < 3/, - 1 I 1/z and d13’ for x > 3, 6, Finally, dL3’ is negative for any X. 
We note that a similar treatment applied to the case of longitudinal strain in a mic- 

roinhomogeneous medium leads to the conclusion that in this case the tensors S&l 

and Eijkj are transversally isotropic (hexagonal symmetry). 
Let us estimate the anisotropy of the matrices d&, and d&,, under shear strain, The 

following relations define the four anisotropy coefficients specifying the deviation of 
the matrix structures from their isotropic form 

Al = d,, 1 dm A, = d,, 1 d,, 
A, = du I da, A, = 2d,, / (4, - do) 

For most materials the parameter 3t varies within the limits 0.7 < x <0.8. There- 
fore, setting x = 3/4 we find from (4.3) that the anisotropy parameters are equal to 

- 3, 3/7, 4h and 116/g for A,” and ij3, l/s, l/9 and 12 for 11,‘. This shows that 

the tensors EGkl and S$ are essentially anisotropic and the isotropic approximation 
(1.1) is found to be much too inaccurate for the shear strain. We stress that the discre- 

pancy becomes particularly large for the stress ans strain dispersion in the shear plane, 
for which the isotropic approximation with X. = 3/4 yields values which are, respectiv- 
ely, 3.5 and 13 times smaller. 
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